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Evaluating Soil Color with Farmer Input and Apparent Soil Electrical Conductivity
for Management Zone Delineation

K. L. Fleming,* D. F. Heermann, and D. G. Westfall

ABSTRACT scale too coarse to be effective. Franzen et al. (2002)
compared Order 1 and Order 2 soil surveys with mapsVariable rate fertilizer application technology (VRT) can provide
from grid sampling and topography based zone maps.an opportunity to more efficiently utilize fertilizer inputs; however,

accurate prescription maps are essential. Researchers and farmers Order 2 soil surveys were seldom useful in determining
have understood the value of dividing whole fields into smaller, homo- zones for site specific management of NO3–N. Order 1
geneous regions or management zones for fertility management. Man- soil surveys were more highly related to soil NO3–N
agement zones can be defined as spatially homogeneous subregions than Order 2 surveys, but their consistency was not as
within a field that have similar crop input needs. Delineating manage- high as when topography based zones or maps from
ment zones that characterize the spatial variability within a field may grid sampling were used. Landscape position also has
provide effective prescription maps for VRT. The objective of this

been used to divide fields (Fiez et al., 1994). They foundresearch was to compare and evaluate management zones developed
that landscape position alone was not effective in divid-from soil color (SC) and farmer experience with management zones
ing fields into units for variable rate N management.developed from apparent electrical conductivity (ECa). These two
However, Franzen et al. (2001) concluded that topogra-methods of developing management zones were compared with soil

nutrient levels, texture, and crop yields collected on two fields in 1997. phy-based zone soil sampling may be useful in semiarid
The soil and yield parameters followed the trends indicated by both environments. Long et al. (1998) proposed using the spa-
management zone methods at Field 1 with the highest values found tial variation in grain protein levels to identify N man-
in the high productivity zones and the lowest the low productivity agement zones in spring wheat (Triticum aestivum L.).
zones. Significant differences were found among the management Currently, the procedure is applicable for dryland fields
zones. However, at Field 2 the high and medium productivity zones that are cropped annually to wheat. Practical implemen-
were generally not significantly different using the SC approach,

tation of this procedure requires that an appropriatewhereas the ECa approach was effective in identifying three distinct
sensor be made available to producers that can continu-management zones. Both methods of developing management zones
ously read the protein concentration of grain from com-seem to be identifying homogeneous subregions within fields.
bine harvester. Ostergaard (1997) developed manage-
ment zones for VRT N application based on soil type,
yield, topography, aerial photos, and producer experi-Accurate prescription maps are essential for effec-
ence. Five fields were divided into 12 to 17 managementtive VRT fertilizer application (Sawyer, 1994; Fer-
zones. The zones were soil sampled to determine N rate.guson et al., 1996). Researchers and farmers have under-
They found a $15 to $35 per hectare economic advantagestood the value of dividing whole fields into smaller,
using variable rate N application. Fleming et al. (2001)homogeneous regions or management zones for fertility
describe the application of soil color and farmer knowl-management. A management zone for VRT application
edge to define management zones for variable rate fertil-can be defined as a subregion of a field that expresses
izer application. Initial analysis indicates that this methoda homogeneous combination of yield limiting factors for
is effective in identifying different management zones.which a single rate of a specific crop input is appropriate
However, ground truthing is needed to develop accurate(Doerge, 1999). Delineating management zones that char-
VRT maps from the zones.acterize the spatial variability within a field may provide

effective prescription maps for VRT.
Earlier studies proposed the division of fields by soil DEVELOPING MANAGEMENT ZONES

type (Carr et al., 1991). Their work indicated that applying Method 1: Soil Color with Farmer Inputdifferent fertilizer treatments to contrasting soils in a
The spectral properties of bare soil surfaces are largelyfield can generate greater returns than applying a field

governed by soil organic matter (SOM) and moistureaverage fertilizer treatment. Mausbach et al. (1993) con-
(Schreier et al., 1988). The gray tone pattern in blackcluded National Cooperative Soil Survey is not ade-
and white aerial photographs is often a reflection ofquate for variable rate application. Soil surveys were
these soil properties and may be linked to productivitynot intended for precision farming and tend to map at
(McCann et al., 1996). Chen et al. (2000) found that
remotely sensed imagery of a bare soil field could be

K.L. Fleming, Agriliance, LLC, 4545 Wheaton Dr., F190, Fort Collins, quantified to describe the spatial variation of SOM.
CO 80525; D.F. Heermann, USDA-ARS-WMU, 2150 Centre Ave.,
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SOM. The technology and methodology were simple basis for developing management zones for VRT. The
and accurate enough to be of practical use in agricultural objective of this paper is to compare and evaluate pre-
production fields. Using LANDSAT images, Bhatti et scription maps developed from soil color and farmer
al. (1991) reported SOM distribution highly correlated experience with prescription maps developed from ECa.
with the spatial distribution determined by grid sam-
pling the surface soil. In addition, the semivariograms MATERIALS AND METHODS
for the two methods of determining SOM were similar.

Field studies were conducted in 1997 on two center pivotMore importantly, the SOM content was significantly
irrigated fields in northeastern Colorado to assess the technicalcorrelated to winter wheat yield. These data suggest that
and economic feasibility of precision farming. Data from theseSOM determined by aerial photographs or remote sens- locations will be discussed and used to evaluate the manage-

ing may be used to determine site-specific management ment zones. The area of Field 1 was 71 ha and Field 2 was
zones. 52 ha. Soils in both fields included a Valentine sand (sandy,

Scientists know that the experiences of farmers have mixed nonacid, mesic Typic Ustipsamments), a Bijou loamy
been extremely important in the development of agri- sand (coarse loamy, mixed, mesic Mollic Haplargids), and
culture as we know it today (Crookston, 1996). If it were a Truckton loamy sand (coarse loamy, mixed, mesic Udic

Argiustolls) (Soil Survey Staff, 1996). These are nonsalinenot for farmers’ experiential decision-making, most of
soils. The fields were in continuous corn (Zea mays L.) through-the modern agriculture that we take for granted today
out the study. Each field has been managed and operated bywould be unknown. Dr. Crookston has spent several
the same two farmers since 1977. Irrigation strategy was basedyears working with agricultural researchers. It was his
on experience, no formal scheduling program was used. Fertil-observation that the family farm has been a valuable
ity management was based on soil sampling and experience.research enterprise, each generation has studied its al-
All nutrients have been applied uniformly at these fields.ternatives and made its decisions. Unfortunately, the Aerial 35-mm bare soil photographs obtained from USDA

potential contributions of farmer knowledge to soil and Farm Service Agency flights were used as an initial template
crop research is not being fully utilized today. Farmers in developing the soil color with farmer input management
generally know which areas of a field produce high zones. The bare soil photographs were geo-registered and
yields and which areas are low in production. It is logical enhanced to contrast color differences using AgriTrak Profes-

sional software (Agritrak, 1998). The farmers then drew vectorthat nutrient needs are different for these areas. This
lines on the photographs using AgriTrak Professional basedallows identification of different management zones in
primarily on differences in soil color to establish the individuala field using farmer knowledge as one of the predictors.
high, medium, and low productivity management zones. The
decision to delineate three management zones was made by

Method 2: Apparent Electrical Conductivity the farmers. Their logic was they felt in some areas of the
field they had been applying adequate levels of crop inputs forElectrical conductivity (EC) is the ability of a material
optimum production while in others application rates appliedto transmit (conduct) an electrical current. Apparent
were too high and too low for optimum production, leadingelectrical conductivity mapping has been useful in locat- to their choice of three management zones. A recent study

ing saline seeps in the northern Great Plains (Halvorson using a quantitative clustering approach to develop manage-
and Rhoades, 1974) and for diagnosing salinity-related ment zones found that maximizing the variability between
problems in the irrigated Southwest (Rhoades and Cor- zones was achieved when the number of zones was three or
win, 1981). Researchers also have used soil EC to mea- less (Fridgen et al., 2004). After initially defining the soil color

zones on their personal computers, each farmer drove oversure or estimate many other chemical and physical prop-
the fields and made qualitative adjustments in the zone bound-erties of nonsaline soils. Williams and Hoey (1987) found
aries on laptop computers based on topography changes andthat EC strongly correlates to soil texture. In addition to
their production experience on the fields.its ability to identify variations in soil texture, electrical

To develop the ECa management zones, Fields 1 and 2 wereconductivity has proven to relate closely to other prop-
mapped using a GPS equipped Veris model 3100 conductivityerties that often determine a field’s productivity (Lund sensor (Lund and Christy, 1998). The Veris system identifies

et al., 1999). These include water content (Kachanoski soil variability by directly sensing soil electrical conductivity.
et al., 1988), cation exchange capacity and exchangeable As the cart is pulled through the field, a pair of coulter elec-
Ca and Mg (McBride et al., 1990), depth to claypans trodes transmit an electrical current into the soil, while two
(Kitchen et al., 1999), soil organic C (Jaynes, 1996), and other pairs of coulter electrodes measure the voltage drop.

The measurement electrodes are configured to measure ECaherbicide behavior in soil (Jaynes et al., 1994). Sudduth
over an approximate 0- to 30-cm depth (shallow reading) aset al. (1995) found strong correlations between ECa and
well as a 0- to 90-cm depth (deep reading). The system geo-depth to claypan and yield. Heermann et al. (1999)
references the ECa measurements using an external Trimblereported that ECa was the best predictor of crop yield
ag32 DGPS receiver, and stores the resulting data in digitalwhen compared with many other common soil and crop
form.parameters. Soil classification using ECa provides an ef-

Data were collected in April 1998 on transects spaced ap-fective basis for delineating interrelated physical, chemi- proximately 10 m apart on a l-s interval, corresponding to a
cal, and biological soil attributes (Johnson et al., 2001). measurement every 3 to 5 m along the transects. This proce-
With the advent of global positioning systems (GPS), dure resulted in a data density of 200 to 300 points per hectare.
practitioners can now place ECa measuring devices on Clustering was used to group the ECa measurements into
GPS-equipped field vehicles and create ECa maps for management zones. The objective of cluster analysis is to

statistically minimize the within-group variability while max-all types of agricultural soils. These maps can be the
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imizing the among-group variability to produce homogeneous a1 � 1 if high productivity management zone
a1 � 0 if medium productivity management zonegroups that are definitive from one another.

The shallow, deep, and difference between the shallow and a1 � �1 if low productivity management zone
a2 � 1 if medium productivity management zonedeep ECa point readings were used for the cluster analysis;

zones with the highest, intermediate, and lowest ECa values a2 � 0 if high productivity management zone
a2 � �1 if low productivity management zonewere defined as high, medium, and low productivity zones,

respectively. These data were standardized to a mean of 0 and
When spatial autocorrelation exists in a data set the assump-standard deviation of 1 to bring all data to a standard measure-

tion of independent observations in a classical model is vio-ment scale. The analyses were performed using Ward’s Mini-
lated. This can underestimate the standard errors, resultingmum Variance method using SAS statistical software (SAS
in increased overall significance between individual parame-Inst., 1990). This method is an agglomerative hierarchical clus-
ters or overestimate the standard error resulting in an overalltering technique (initial clusters are formed from pairing of
lack of significance when one exists (Bonham and Reich,individual cases; subsequent clusters are formed from joining
1999). All of the soil sample data points were spatially joinedpairs of previous clusters and/or cases; clustering continues
to their respective management zones for the analysis of vari-until all clusters/cases are joined into one cluster). Ward’s
ance. For the spatially dense yield data the points were aver-method, as many clustering methods, is sensitive to outliers.
aged in 30 by 30 m pixels and then spatially joined to theirConsequently, the algorithm was instructed to keep 10% of the
respective management zones. This was necessary for the spa-most “different” cases out of clustering process. The clustered
tial analysis in S-PLUS. The spatial algorithms are too complexpoint data was then interpolated using proximity and smoothed
to analyze very large data sets such as the complete yield andusing nine nearest neighbor majority in ArcView (ESRI, 1994)
ECa on personal computers available at this time. Data pixelsto create the final management zones.
that fell into more than one management zone were dropped.Soil sampling was completed in April 1997 on a 76-m grid

over both fields. The surface 0 to 0.2 m was analyzed for NO3,
NH4, P, K, Zn, pH, SOM, and texture. Subsoil samples from RESULTS AND DISCUSSION
0.3- to 0.6-, 0.6- to 0.9-, and 0.9- to 1.2-m increments were

Field 1analyzed for NO3–N.
The fields were yield mapped with two Case IH Axial Flow When comparing the two methods the managementcombine harvesters equipped with Micro-Trak yield monitors.

zones and results of the analysis of variance were similarLocation data were collected on a 1-s interval using an Ashtech
on this field with the following common observationsSuper C/A receiver GPS system in differential mode. The GPS
(Fig. 1).system was a 12 channel receiver. All the GPS positional data

Levels of SOM and crop yield were significantly dif-were based on the World Geodetic System of 1984 (WGS84).
ferent across all management zones. Nitrate and K levelsThe GPS data was differentially corrected with a base station

set near the experimental field. Yield data were processed were significantly different between the high/low and
and mapped using Farmers Software Harvest Mapping System high/medium zones while Zn levels were significantly
(Redhen Systems, 1996). different between the high and low productivity zones.

An analysis of variance was performed on the soil and yield Phosphorus did not follow the trends seen with the other
data from the management zones using S-PLUS statistical nutrients, with higher levels seen in the lower productiv-
software (Mathsoft, 1995). Initially an ordinary least squares ity zones and lower levels in the high productivity zonesmodel (OLS) was used; when spatial autocorrelation between (Tables 1 and 2).observations existed, a spatial auto regressive model (SPA) was

Soil texture showed similar trends. Clay and silt levelsused. Spatial autocorrelation was measured using Moran’s I
were higher in the high productivity zone, intermediate(Moran, 1950). The Moran’s I is used to test for the presence
in the medium zones, and lowest in the low productivityof spatial autocorrelation in a two-dimensional plane. In this
zones while sand followed the opposite trend using bothstudy, the null hypothesis is that the measurements of soil and

yield data are independent of one another in space. Moran’s I methods (Table 3). Differences were significant be-
is a dimensionless statistic and can be interpreted as a Pearson tween all texture classes with the SC method; however,
product-moment correlation between variables x and y. The differences were not significant between the high and
index generally ranges over the interval of �1 to �1, but can medium zones using the ECa method.
exceed these limits if an irregular pattern of weights has been Higher productivity in areas of lower sand and higher
used or extreme values are heavily weighted (Bonham and
Reich, 1999).

The spatial weight matrix used in the spatial model was
based on inverse distance squared. The null hypothesis of no
significant differences between management zones was tested
by the ANOVA model

Y (ij) � y.. � a(i) � e(ij)

where y.. is the grand mean of all observations, a(i) is the
effect of the ith management zone, and e(ij) are independent
random errors. Equality of means by management zone was
tested with a restatement of the ANOVA model in the form
of a regression model

Fig. 1. Field 1 management zones–soil color with farmer input man-
agement zones on the left and apparent electrical conductivityY(ij) � y.. � b0 � b1 � a1 � b2 � a2 � e(ij)
management zones on the right (low productivity � white, medium
productivity � gray, high productivity � black).where
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Table 1. Soil color (SC) and apparent electrical conductivity (SCa) at Field 1. Analysis of variance of soil organic matter (SOM), NO3–N,
and P as a function of management zone (MZ 1 � low productivity, MZ 2 � medium productivity, and MZ 3 � high productivity).

Management zone SOM NO3–N P

n % SD n mg kg�1 SD n mg kg�1 SD
SC

1 35 0.8a* 0.03 35 18a 1.3 35 16a 0.9
2 57 1.0b 0.02 57 20a 1.1 57 11b 0.8
3 29 1.2c 0.03 29 25b 1.5 29 14a 1.1
Model SPA† SPA OLS‡
Pr � F 0.0001 0.0001 0.001

ECa

1 52 0.85a 0.02 52 17a 1.1 52 13a 0.8
2 57 1.0b 0.02 57 20a 1.1 57 13a 0.8
3 13 1.2c 0.05 13 30b 2.2 13 13a 1.7
Model SPA OLS SPA
Pr � F 0.0001 0.0001 0.0001

* Means followed by different letters are significantly different at p � 0.05.
† Spatial auto regressive model.
‡ Ordinary least squares model.

Table 2. Soil color (SC) and apparent electrical conductivity (SCa) at Field 1. Analysis of variance of K, Zn, and yield as a function of
management zone (MZ 1 � low productivity, MZ 2 � medium productivity, and MZ 3 � high productivity).

Management zone K Zn Yield

n mg kg�1 SD n mg kg�1 SD n Mg ha�1 SD
SC

1 35 142a* 6.6 35 3.8a 0.2 639 9.8a 0.2
2 57 160a 5.2 57 4.1ab 0.1 963 10.7b 0.1
3 29 207b 7.2 29 4.4b 0.2 474 10.8c 0.2
Model SPA† SPA SPA
Pr � F 0.0001 0.001 0.0001

ECa

1 52 148a 6.0 52 4.0a 0.1 926 9.8a 0.1
2 57 166a 5.7 57 4.1ab 0.1 1080 10.7b 0.1
3 13 224b 12.0 13 4.5b 0.3 168 10.8c 0.2
Model SPA OLS‡ SPA
Pr � F 0.0001 0.01 0.0001

* Means followed by different letters are significantly different at p � 0.05.
† Spatial auto regressive model.
‡ Ordinary least squares model.

clay levels would be expected due to the higher water all parameters, indicating the data are spatially auto
correlated. In general the spatial model had slightlyholding and cation exchange capacity of the soils higher

in clay. lower standard error and higher r 2 using both manage-
ment zone approaches. However, the spatial model wasThese results are similar to the findings of Mulla and

Bhatti (1997). They concluded that in terms of practical- not always significantly better than the OLS. With the
SC method the Likelihood ratios were not significantity, organic matter estimated from bare soil images offer

the best feasibility in dividing fields into management for P, sand, silt, and clay while with the ECa approach
the Likelihood ratios were not significant for NO3, Zn,zones

The Moran’s I for the raw data was significant across and silt. The Moran’s I for the residuals of these parame-

Table 3. Soil color (SC) and apparent electrical conductivity (SCa) at Field 1. Analysis of variance of sand, silt, and clay as a function
of management zone (MZ 1 � low productivity, MZ 2 � medium productivity, and MZ 3 � high productivity).

Management zone Sand Silt Clay

n % SD n % SD n % SD
SC

1 35 88.4a* 0.009 35 4.2a 0.007 35 7.4a 0.008
2 57 85.2b 0.007 57 5.6b 0.006 57 9.2b 0.006
3 29 81.8c 0.010 29 9.4c 0.008 29 10.8c 0.009
Model OLS† OLS OLS
Pr � F 0.0001 0.0001 0.0001

ECa

1 13 87.7a 0.009 13 4.5a 0.006 13 7.7a 0.008
2 57 83.8b 0.006 57 6.3b 0.005 57 10.0b 0.006
3 52 81.5b 0.014 52 7.8c 0.007 52 10.7b 0.009
Model SPA‡ OLS SPA
Pr � F 0.0001 0.0001 0.0001

* Means followed by different letters are significantly different at p � 0.05.
† Ordinary least squares model.
‡ Spatial auto regressive model.
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Table 4. Soil color (SC) and apparent electrical conductivity (SCa) at Field 2. Analysis of variance of SOM, NO3–N, and P as a function
of management zone (MZ 1 � low productivity, MZ 2 � medium productivity, and MZ 3 � high productivity).

Management zone SOM NO3–N P

n % SD n mg kg�1 SD n mg kg�1 SD
SC

1 38 0.96a* 0.02 38 11a 0.7 38 11a 0.7
2 28 1.15bc 0.02 28 14bc 0.8 28 15bc 0.9
3 22 1.09c 0.02 22 14c 0.8 22 15c 1.0
Model OLS† SPA‡ OLS
Pr � F 0.0001 0.0001 0.001

ECa

1 39 0.95a 0.01 39 11a 0.6 39 11a 0.8
2 27 1.13b 0.02 27 13b 0.8 27 15a 0.9
3 22 1.14b 0.02 22 15b 0.9 22 14.b 1.0
Model OLS SPA OLS
Pr � F 0.0001 0.0001 0.02

* Means followed by a different letters are significantly different at p � 0.05.
† Ordinary least squares model.
‡ Spatial auto regressive model.

Table 5. Soil color (SC) and apparent electrical conductivity (SCa) at Field 2. Analysis of variance of K, Zn, and yield as a function of
management zone (MZ 1 � low productivity, MZ 2 � medium productivity, and MZ 3 � high productivity).

Management zone K Zn Yield

n mg kg�1 SD n mg kg�1 SD n Mg ha�1 SD
SC

1 38 162a* 5.1 35 2.2a 0.06 735 11.2a 0.2
2 28 218bc 5.9 57 2.7bc 0.08 500 14.1b 0.3
3 22 199c 6.7 29 2.7c 0.09 372 13.1c 0.3
Model OLS† OLS SPA‡
Pr � F 0.0001 0.0001 0.0001

ECa

1 39 159a 4.5 39 2.2a 0.06 637 11.0a 0.2
2 27 203b 5.4 27 2.8b 0.08 605 13.4b 0.2
3 22 226c 6.0 22 2.7b 0.09 358 13.7c 0.3
Model OLS OLS SPA
Pr � F 0.0001 0.0001 0.0001

* Means followed by different letters are significantly different at p � 0.05.
† Ordinary least squares model.
‡ Spatial auto regressive model.

ters was also not significant, indicating the management consistently identifying different productivity subregions
zones are accounting for the spatial autocorrelation in within the field; however, it indicates the subregions
these parameters. need to be ground truthed to classify them as manage-

It is interesting how similar the SC management zones ment zones. The management zones developed from
that were defined using a qualitative supervised classifi- ECa indicate why the trends in the SC approach changed.
cation with our cooperating farmers are to the ECa man- The patterns of the zones from both methods are quite
agement zones that were defined using a quantitative similar; however, the ECa zones reveal significant inclu-
unsupervised classification. The two methods seem to sions of high productivity soils in the area that was defined
be capturing similar information in this field. as medium with the SC approach. There are also inclu-

sions of medium productivity soils in the area defined as
Field 2 high in productivity with the SC method (Fig. 2).

All of the soil and crop parameters followed theResults of the spatial analysis of variance for the SC
trends indicated by the management zones. Crop yield,method on Field 2 indicated that the soil and crop pa-
K, sand, silt, and clay were significantly different acrossrameters were different across the management zones;
all three zones using the ECa method (Tables 4, 5, and 6).however, they did not follow the trends indicated by

Other studies have also shown that clustering algo-the farmer-developed zones. The zone classified as me-
rithms can be effective in developing management zones.dium in productivity was highest in SOM, K, yield, and
Stafford et al. (1998) used yield maps to regionalizeclay, while the high productivity zones had intermediate
fields into management units. The clustering procedurevalues for these parameters. The low productivity zone
they used recognized subregions of the fields with dis-had the lowest values for the parameters listed above
tinct patterns of season to season variation in yields.and were highest in sand (Tables 4, 5, and 6). In addition,
Boydell and McBratney (1999) found that a number ofno significant difference was detected between the high
consecutive years of remotely sensed cotton (Gossyp-and medium productivity zones for the soil parameters
ium hirsutum L.) yield estimates clustered to generatediscussed above. This would seem to indicate this method
regions of similarity for management zones. Shatar andis only defining two zones in this field.

The results from Field 2 illustrate the SC method is McBratney (2001) used a k means cluster analysis on
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Table 6. Soil color (SC) and apparent electrical conductivity (SCa) at Field 2. Analysis of variance of sand, silt, and clay as a function
of management zone (MZ 1 � low productivity, MZ 2 � medium productivity, and MZ 3 � high productivity).

Management zone Sand Silt Clay

n % SD n % SD n % SD
SC

1 38 84.4a* 0.008 38 7.3a 0.006 38 8.3a 0.007
2 28 75.4b 0.009 28 13.3cb 0.008 28 11.4b 0.008
3 22 78.7c 0.010 22 11.6c 0.006 22 9.7ab 0.009
Model OLS† OLS OLS
Pr � F 0.0001 0.0001 0.0001

ECa

1 39 84.5a 0.007 39 7.6a 0.007 39 7.9a 0.006
2 27 78.4b 0.008 27 11.4b 0.008 27 10.1b 0.007
3 22 74.5c 0.009 22 13.3c 0.009 22 12.1c 0.008
Model SPA‡ OLS SPA
Pr � F 0.0001 0.0001 0.0001

* Means followed by different letters are significantly different at p � 0.05.
† Ordinary least squares model.
‡ Spatial auto regressive model.

sorghum [Sorghum bicolor (L.) Moench] yields, soil or- Moran’s I analysis indicated the data were spatially auto
correlated. On Field 1 the analysis was mixed with cer-ganic C, and soil K to subdivide fields into homogeneous

units. The algorithm presented showed some promise tain soil parameters the OLS model was adequate; with
others a spatial auto regressive model was needed. Onfor identifying spatially contiguous zones, which are more

homogenous in soil properties than the whole field. Field 2 the OLS model was adequate; the MZ accounted
for the spatial correlation for the most part in this field.Yang and Anderson (1996) also had success using clus-

tering to classify management zones. In this study color This analysis has identified the large scale spatial vari-
ability between zones for each method. However, fur-infrared digital video images of two grain sorghum fields

in south Texas were acquired and classified into man- ther analysis is needed to evaluate the small scale spatial
variability within zones to determine which method isagement zones using unsupervised classification. Their

analysis of variance showed that plant biomass and yield characterizing the fields most accurately. An intense
small scale cluster sampling technique within each zonediffered significantly among their management zones.

The results from the Moran’s I analysis on the raw is needed to accomplish this. Based on this initial evalua-
tion it appears ECa is more consistent in identifying differ-data was similar to Field 1 with all of the parameters

being spatially auto correlated using both methods. How- ent management zones across fields. Differences in the
effectiveness of soil color with farmer input managementever, the Moran’s I for the residuals of most of the soil

parameters was not significant, indicating the manage- zones between fields may be due to the selective skills
of the different farmers in recognizing zone boundaries.ment zones for the most part were accounting for the

spatial correlation in the data in this field. The excep- Further testing over a broader scope of fields, farmers,
and crop production systems is needed to confirm thesetions were NO3 in both zone delineation methods and

sand and clay with the ECa method. The Likelihood results. In the future, methods using the information
from both ECa and soil color along with farmer knowl-ratios were significant for these parameters, indicating

the spatial model was significantly better. edge may provide the most effective management zones.
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